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Executive summary 
In this study we projected seabird abundance in 2050 under climate change in western 
Scotland, Northern Ireland and the border counties of the Republic of Ireland (the INTERREG 
VA area). This was carried out to inform analysis of the vulnerability of each species to climate 
change. 
 
Projections were made based on a fitted relationship between terrestrial and marine climate 
and seabird occurrence and abundance combined. Air temperature and precipitation were 
used to summarise terrestrial climate, while sea surface temperature and potential energy 
anomaly were used to summarise marine climate. Seabird abundance data were derived from 
the most recent two national seabird censuses for Britain and Ireland. The relationship was 
fitted using a Bayesian hurdle model with a spatial random effect. Future projections were 
made under climate change scenario RCP8.5. 
 
Models could be produced for 19 out of the 25 species breeding in the area. The majority of 
species are projected to decline in abundance in the INTERREG VA area, although there is 
considerable uncertainty in this for all species. Furthermore, for most species the trend is 
expected to vary spatially within the INTERREG VA area. In general, the INTERREG VA area is 
projected to hold a greater proportion of species’ British and Irish populations by 2050 than 
at present. For some species with few data the model results are less reliable. Models and 
projections are summarized in this report with more detailed information provided in the 
species (Appendix B) and management region (Appendix E) accounts whilst projections are 
also provided in shapefile format. 
 
Overall, the projected trends in abundance accord with recent observed trends, suggesting 
that species may already be responding to climate change. Interestingly, the effect size was 
greater for terrestrial than marine climate variables; however, the interpretation of this is not 
straightforward. 
 
The climate change vulnerability for each species was estimated by combining the projected 
abundances with: i) information from the literature review of mechanisms by which climate 
change affects seabirds; and ii) recent observed trends in abundance. The majority of species 
are expected to be vulnerable to climate change; however, climate change will likely present 
four species with opportunity. The results of the climate change vulnerability analysis, as well 
as the spatially detailed projections, can be used to inform conservation of seabird 
populations to mitigate their risk under climate change. 
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1. Introduction 
The impacts of climate change on natural systems are growing (Scheffers et al. 2016), and are 
projected to become more important through time (e.g. Warren et al., 2018). In response, it 
is important to identify the species that are likely to be most vulnerable to future climate 
change impacts, in order to inform conservation planning (Foden et al. 2019). Whilst a wide 
range of approaches have been developed to inform climate change vulnerability assessment 
(see Foden et al. 2019 for an overview), it appears that the most robust approaches use 
historical trend information to parameterise models of projected future impact (Wheatley et 
al. 2017), and there is building evidence that models that project future climate change 
impacts do have some predictive power in explaining recent population trends (Green et al. 
2008; Stephens et al. 2016). Such approaches have already been applied to European birds 
(Huntley et al. 2007), British birds (Johnston et al. 2013; Massimino et al. 2017) and 
biodiversity in Britain across a range of taxa (Pearce-Higgins et al. 2017). Collectively, these 
tend to show that cold-associated northern and upland species, and species of conservation 
concern, are amongst the most vulnerable to climate change (Massimino et al. 2017, Pearce-
Higgins et al. 2017).  

Britain and Ireland support approximately one quarter of Europe’s breeding seabird 
populations, many of which are sufficiently abundant to achieve international importance 
(Stroud et al. 2001).  A total of nearly 8 million seabirds from 25 seabird species were 
estimated to breed in Britain and Ireland at the start of the 21st century (Mitchell et al. 2004)  
– including the majority of the world’s population of Manx shearwaters Puffinus puffinus 
(90%), northern gannets Morus bassanus (68%; hereafter ‘gannet’) and great skuas 
Stercorarius skua (60%). Bespoke modelling has suggested that many seabird species are 
particularly sensitive to climate change (Johnston et al. 2013). In line with this, a number of 
long-term studies have already documented significant impacts on British seabird 
populations, particularly affecting black-legged kittiwake Rissa tridactyla (hereafter 
‘kittiwake’), Arctic skua Stercorarius parasiticus, and Atlantic puffins Fratercula arctica 
(hereafter ‘puffin’) (Frederiksen et al. 2004a; 2004b; 2006; 2007a; 2007b; Burthe et al. 2012; 
Harris et al. 2013; Carroll et al. 2015; Perkins et al. 2018).  Such changes have also been noted 
elsewhere across their breeding range, with kittiwake and puffin now being classified as 
vulnerable on the International Union for Conservation of Nature Red List of Threatened 
Species (Birdlife International 2020a; 2020b). 

These impacts occur through a wide range of mechanisms, but key appears to be the impact 
of rising ocean temperatures, which through bottom-up processes affect primary 
productivity, altering the strength, timing and composition of the spring phytoplankton bloom 
(Scott et al. 2006; Bedford et al. 2020), and in-turn impacting the abundance, size and 
availability of key fish prey species, such as lesser sandeels Ammodytes marinus (Johnston et 
al. 2021).This can reduce seabird breeding success (e.g. Frederiksen et al. 2006; Burthe et al. 
2012; Carroll et al. 2015) and survival rates (Frederiksen, Wanless, et al. 2004; Harris et al. 
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2013), impacting populations, a number of which are in long-term decline (JNCC 2020). At the 
same time, climatic changes may also have more direct impacts on seabirds, with warmer air 
temperatures associated with heat-stress in some species during the breeding season 
(Oswald et al. 2008), whilst others can be particularly vulnerable to heavy rainfall and storm 
events causing direct adult mortality resulting in seabird wrecks or destroying breeding 
attempts (Frederiksen et al. 2008; Newell et al. 2015; Morley et al. 2016).  There is also strong 
evidence for the impacts of oceanography-mediated changes in seabird distribution at sea 
with modelling scenarios indicating significant changes by 2050 (Sadykova et al. 2020). It is 
also becoming apparent that migratory flyways of seabirds are likely to shift in response to 
climate change, most notably in the Arctic (Clairbaux et al. 2019). 

The potential vulnerability of seabirds to climate change may result from a combination of 
their physiology, ecology and behaviour (Mitchell et al. 2020). It has been suggested that 
surface-feeding species may be more vulnerable to impacts on food availability due to their 
reduced foraging flexibility (Furness and Tasker 2000), as may those with more restricted diets 
(Howells et al. 2018). Breeding ecology is likely to have a big impact on the vulnerability of 
nest sites to detrimental climatic events such as storm surges, strong winds or heavy 
precipitation (Newell et al. 2015), whilst their migratory behaviour will affect the geographic 
scale over which species are impacted by climate change (Pearce-Higgins & Green 2014). 

Previous modelling has suggested that British seabirds are particularly vulnerable to climate 
change when considering the influence of terrestrial climatic variables on the 
range/distribution and abundance of breeding populations. Generally negative associations 
between both summer temperature/rainfall and seabird abundance at colonies are projected 
to result in an overall decline in the seabird assemblage across UK Special Protection Areas 
(SPAs) of approximately 50% by 2080 under a high (A1F1) climate change scenario, with 
declines of more than 50% projected for 7/17 species (Johnston et al. 2013). Russell et al. 
(2015) projected that the range extent of 65% of British breeding seabirds would decline 
across Europe, with Leach’s storm-petrel Oceanodroma leucorhoa, great skua, Arctic skua, 
kittiwake, Arctic tern Sterna paradisaea and auks being particularly vulnerable. These studies 
support the climate envelope modelling of Huntley et al. (2007) across Europe which also 
suggested that the breeding ranges of many seabird species in Britain and Ireland would shift 
northwards by the end of the 21st Century, resulting in the potential extinction of a number 
of species in Britain and Ireland. Except for Russell et al. (2015), these existing studies have 
been based only on terrestrial climate variables, omitting changes to oceanographic variables, 
which are likely to provide the main mechanism by which climate change will affect seabird 
species (see Johnston et al. 2021 for an overview).  
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Figure 1. INTERREG VA area (yellow) and MarPAMM management regions (blue, Outer Hebrides; black, Argyll; 
red, Co. Down – Co. Louth; green, North Coast Ireland – North Channel).  
 
In this study, we incorporate both projected changes in a range of oceanographic and 
terrestrial climatic variables, in order to produce new projections on abundance as well 
presence/absence patterns, both for Britain and Ireland as a whole, and specifically for the 
INTERREG VA area that is the focus of the MarPAMM project (Figure 1). Within this region 
there are four MarPAMM management regions: Outer Hebrides; Argyll; Co. Down – Co. Louth; 
and North Coast Ireland – North Channel. This area encompasses the West of Scotland, 
including the Outer and Inner Hebrides; and the entire coast of Northern Ireland. Within the 
Republic of Ireland (Ireland hereafter), the north-west and north-east (border) counties are 
encompassed. Incorporating both the North Atlantic and the Irish Sea is important since 
oceanographic conditions vary temporally and spatially, with the north-west of Scotland, 
Ireland, and Northern Ireland being more exposed and experiencing higher wave heights and 
energies than coasts within the Irish Sea (Baxter et al., 2011; Masselink et al., 2016), which 
may impact seabird vulnerability to climate change. 

 
Seabirds around Britain and Ireland have been monitored through periodic censuses: 
Operation Seafarer provided a first, but incomplete assessment from 1969-70 (Cramp et al. 
1974), the Seabird Colony Register (hereafter ‘SCR Census’ 1985-88; Lloyd et al. 1991) and 
Seabird 2000 (Mitchell et al. 2004) which included data from 1998-2002. Together, these 
provide good data on spatial and temporal variation in abundance during the second half of 
the 20th Century. Data from the current census, Seabirds Count (2015-2020+), are still being 
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collected, collated and analysed, and therefore are not available for inclusion in this analysis, 
but in the future would provide an opportunity for further analysis and to validate the models 
presented. At the same time, the Seabird Monitoring Programme (SMP) provides annual 
monitoring data from a non-random subset of specific colonies extending back to 1986 (JNCC 
2020). Due to the incomplete nature of these data, and the fact they focus on temporal 
changes in specific colonies rather than a comprehensive snapshot, we use the census data 
from SCR Census and Seabird 2000.   
 
Using these seabird data we model spatio-temporal variation in the abundance of seabirds 
from across Britain and Ireland as a function of both climatic and oceanographic variables, as 
well as a number of fixed topographical and bathymetric variables. Then we project future 
changes in abundance to 2050 as a result of projected changes in both climate (UKCP18, Met 
Office Hadley Centre 2018) and oceanography (Scottish Shelf Model, De Dominicis et al. 2018, 
2019) variables under a RCP8.5 (business-as-usual) climate change scenario equivalent to 
approximately 2°C global warming by 2050 compared to 1986-2005 levels (IPCC 2014). Whilst 
national projections are used to indicate overall vulnerability of each species to climate 
change, we specifically focus on projections within the INTERREG VA area as the main output 
from this analysis. In addition to the results presented in this report, the detailed projections 
by site (see under methods for how defined) and species are provided as shapefiles and 
spreadsheets, and summarised in species-specific factsheets that also draw on information 
from the supporting review of climate change mechanisms affecting seabirds (Johnston et al. 
2021). These site-specific projected abundances are also inputs to the at-sea modelling 
undertaken in Task 2.2 (Cleasby et al. 2021).  
 

2. Methods 

2.1 Seabird abundance data 

All seabird species that breed in Britain and Ireland, except yellow-legged gull Larus 
michahellis, were initially included within the analysis (25 species; see Table 1), because they 
all breed within the INTERREG VA region (Figure 1). Seabird abundance data were derived 
from the two most recent seabird censuses of Britain, Ireland, Channel Islands and Isle of Man 
(SCR Census, 1985-88; Seabird 2000, 1998-2002). Counts for Manx shearwater, Leach’s storm-
petrel Oceanodroma leucorhoa and European storm-petrel Hydrobates pelagicus (hereafter 
‘storm-petrel’) in SCR Census were based on best guesses rather than surveys due to the high 
level of uncertainty in the count methods at that time  (P. I. Mitchell et al. 2004), and so these 
data were omitted from the present study for these species. Although neither census 
achieved complete coverage of all seabird breeding sites, inland sites were more completely 
covered in Seabird 2000 than in SCR Census (Figure 2; Mitchell et al. 2004). Data were included 
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from all census-sites in Britain, Ireland, Channel Islands and Isle of Man (hereafter ‘Britain & 
Ireland’). 
 

a) 

 

b) 

 
Figure 2. Census-site locations: a) SCR; b) Seabird 2000. 
 
Key environmental data used in the analysis (see 2.2, 2.3) were available at the 12 km x 12 
km square (hereafter ‘cell’) level, based on the British National Grid. Seabird abundance for 
each census period was therefore likewise derived by simply taking the summed abundance 
for each species within each cell. Data were included from all census-sites (Figure 2): 5,657 in 
SCR Census and 1,968 in Seabird 2000 (many ‘sites’ in SCR Census became ‘sub-sites’ in 
Seabird 2000). When a census-site spanned more than one cell (affecting 282 counts in SCR 
Census, and 1,667 counts in Seabird 2000), the count for that census-site was divided among 
those cells in proportion to the length / area of the site spanning those individual cells, and 
rounded to the nearest integer. 

2.2 General approach to environmental and seabird ecology data 

In selecting terrestrial climate and oceanographic variables, we chose variables which might 
influence seabird abundance through productivity and mortality (Johnston et al. 2021), 
focusing on environmental variables operating at or near the breeding colony (rather than in 
the wintering grounds). Climate change in the wintering areas is likely to influence seabird 
abundance, but there is limited information available on the precise areas where Britain and 
Ireland seabirds winter, and how wintering areas differ between individual breeding colonies 
or census sites. Seabird abundance is expected to be influenced by terrestrial climate both 
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directly (by conditions experienced during the breeding season) and indirectly (by effects of 
non-breeding season conditions, such as by heavy winter rainfall damaging burrows – 
Johnston et al. 2021). Likewise, seabird abundance is expected to be influenced by 
oceanographic variables both directly (such as through storm-related mortality) and 
indirectly: for example, in Portugal, winter SST is negatively related to the proportion of sand 
smelt (Atherina spp.) in little tern Sternula albifrons breeding season diet, which itself is 
positively related to little tern clutch size (Ramos et al. 2013; Correia, 2016). Therefore we 
incorporate terrestrial climate and oceanographic data from both the breeding season and 
non-breeding season, but only at the sites where breeding takes place. 
 
Table 1. Species-specific breeding seasons and foraging ranges, after Campbell and Ferguson-Lees (1972) and 
Woodward et al. (2019). * seabird foraging range from Thaxter et al. (2012) instead (see 2.4). 
 
Common name  
(BTO Species code) 

Scientific name Breeding season Foraging 
range 
(km) 

Fulmar (F.) Fulmarus glacialis May-Sep 542.3 
Manx shearwater (MX) Puffinus puffinus May-Oct 1346.8 
Leach’s storm-petrel (TL) Oceanodroma leucorhoa May-Oct 91.7* 
Storm-petrel (TM) Hydrobates pelagicus May-Oct 336.0 
Gannet (GX) Morus bassanus Apr-Oct 315.2 
Cormorant (CA) Phalacrocorax carbo Mar-Sep 25.6 
Shag (SA) Phalacrocorax aristotelis Jan-Oct 13.2 
Arctic skua (AC) Stercorarius parasiticus May-Aug 62.5* 
Great skua (NX) Stercorarius skua May-Sep 443.3 
Black-headed gull (BH) Chroicocephalus ridibundus Apr-Sep 18.5 
Common gull (CM) Larus canus Apr-Aug 50.0 
Great black-backed gull (GB) Larus marinus Apr-Aug 73.0 
Herring gull (HG) Larus argentatus Apr-Aug 58.8 
Kittiwake (KI) Rissa tridactyla May-Sep 156.1 
Lesser black-backed gull (LG) Larus fuscus Apr-Sep 127.0 
Mediterranean gull (MU) Ichthyaetus 

melanocephalus 
Apr-Sep1 20.0 

Arctic tern (AE) Sterna paradisaea May-Aug 25.7 
Common tern (CN) Sterna hirundo May-Sep 18.0 
Little tern (AF) Sternula albifrons May-Sep 5.0 
Roseate tern (RS) Sterna dougallii June-Aug 12.6 
Sandwich tern (TE) Thalasseus sandvicensis Apr-Sep 34.3 
Black guillemot (TY) Cepphus grylle May-Sep 4.8 
Guillemot (GU) Uria aalge Apr-Aug 73.2 
Puffin (PU) Fratercula arctica Apr-Sep 137.1 
Razorbill (RZ) Alca torda Apr-Aug 88.7 

1 breeding season for Mediterranean gull uses that of black-headed gull (see below).  
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Seabird species differ substantially in the timing of their breeding seasons, and thus in the 
time period over which environmental variables can affect productivity and carry-over 
mortality. In order to account for this, breeding-season environmental variables were 
summarized within each species’ breeding season (Table 1). Species-specific breeding seasons 
were defined as the months during which eggs or chicks can be present, as described by 
Campbell and Ferguson-Lees (1972). Being based on the timing of active nests, this resource 
generally gave a definition of seabird breeding-seasons intermediate between the narrow- 
and broad-sense definitions of seabird breeding seasons (based on timing of migration) in a 
recent review (Furness 2015). No data were available for the breeding season for 
Mediterranean gull Ichthyaetus melanocephalus, so the breeding season for the closely-
related black-headed gull Chroicocephalus ridibundus was used for this species since they 
often breed at the same colonies. 

2.3 Terrestrial climate data 

In common with other studies (e.g. Johnston et al. 2013; Russell et al. 2015), we used air 
temperature and precipitation as proxies of relevant variation in terrestrial climate. 
Temperature and precipitation can both have direct or indirect effects on seabird population 
growth rate through productivity and survival (Johnston et al. 2021). Observed maximum 
monthly temperature, minimum monthly temperature and total monthly precipitation data 
were derived from Had-UK (Met Office et al. 2019) and Met Éireann (Met Éireann 2020) 
interpolated datasets at 1km resolution and aggregated to the 12 km x 12 km cell scale. 
Modelled terrestrial climate variables for 1980-2080 for the same variables were derived from 
Met Office UKCP18 data (Met Office Hadley Centre 2018; Figure 3a, b). For the UKCP18 data, 
projections were available from 12 different global and regional models; there was no a priori 
reason to select any one of these runs, so the median was taken for each of the three monthly 
variables across the 12 projections.  
 
We assume that climate influences abundance through cumulative years’ effects on 
population growth rate, rather than instantaneously influencing abundance solely in the 
census year. Therefore, terrestrial climate data were averaged over the five years up to the 
median year of each census (1986 and 2000 respectively). A small number of counts (one 
Arctic skua count in SCR Census, and one Manx shearwater count and five storm-petrel counts 
in Seabird 2000) took place more than five years before the median year of each census. 
Although these counts are unavoidably related to future climate, given strong spatial variation 
in both abundance and climate, are likely to also reflect associations between later counts of 
those species and climate: these counts were therefore left in the dataset.  
 
From these data, four terrestrial climate variables were derived, summarizing winter and 
breeding season temperature and precipitation respectively (Table 2). These variables were 
designed to capture extremes (rather than central tendency) of climate, because there is 



9 
 

evidence that the extremes of climate are more influential on the trajectory of bird 
populations (Pearce-Higgins et al. 2015a). 
 
 
Table 2. Variables included in models of seabird abundance. For a given cell, all oceanographic variables were 
left blank if no ocean-containing cells were within the foraging area. 

Variable name Calculation 
w_tasmin Five-year December-February mean minimum monthly temperature 
br_tasmax Five-year mean maximum temperature of (yearly) warmest month in 

species-specific breeding season 
w_pr Five-year mean total December-February precipitation 
br_pr Five-year mean total precipitation of (yearly) wettest month in species-

specific breeding season 
w_sst Distance-weighted-mean 24-year mean December-February SST within 

species-specific foraging area 
br_sst Distance-weighted-mean 24-year mean SST over species-specific 

breeding season within species-specific foraging area 
w_pea Distance-weighted-mean 24-year mean December-February PEA within 

species-specific foraging area  
br_pea Distance-weighted-mean 24-year mean PEA over species-specific 

breeding season within species-specific foraging area 
bathymetry Distance-weighted-mean depth of water within foraging area 
coastal Whether cell was entirely (0) more than 5 km from the coast or not (1) 
islands Whether cell contains any islands of less than <15 km2 area (1) or not (0) 
coastline_length Length of coastline (km) within cell 

 

2.4 Oceanographic variables 

The relative importance of different oceanographic variables in driving seabird abundance, 
distribution and demographic parameters are poorly known; however, the most commonly 
included variables in such analyses are bathymetry and Sea Surface Temperature  (SST) (e.g. 
Carroll et al., 2015; Nur et al., 2011; Satterthwaite et al., 2012). Many studies also include an 
index of stratification – either its strength, phenology, or both (Bertrand et al. 2014; Trevail 
et al. 2019). We therefore use three oceanographic variables to characterize relevant 
variation in the marine environment for seabirds: SST, potential energy anomaly (PEA, the 
energy required to fully mix a column of water) and bathymetry.  
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a) 

 

b) 

 
c) 

 

d) 

 
    
Figure 3. a-d) Example change surfaces for environmental variables (see Table 1) used in modelling (black 
polygons = INTERREG VA area). a) Change in five-year mean maximum temperature of (yearly) warmest month 
in Northern fulmar Fulmarus glacialis (hereafter ‘fulmar’) breeding season (br_tasmax, 1996-2000 to 2046-
2050); b) Change in five-year mean total precipitation (mm) of (yearly) wettest month in fulmar breeding season 
(br_pr, 1996-2000 to 2046-2050); c) June SST change (1990-2014 to 2038-2062); d) June PEA change (1990-2014 
to 2038-2062, masked to <200m ocean depth).  
 
We include PEA as a measure of ocean stratification: more intensively stratified water 
columns have higher PEA values. In our study area, the PEA of waters on and off the 
continental shelf differs by several orders of magnitude, because the deeper waters off the 
continental shelf require more energy to become fully mixed, by definition. The dominance 
of bathymetry in variation in PEA therefore overwhelms local spatial patterns in PEA on the 
continental shelf. As bathymetry was already used in the model, PEA values were therefore 
omitted for deeper (<200m deep) waters. 
 
SST and PEA were derived from Scottish Shelf Model (SSM; De Dominicis et al. 2018, 2019) 
data. Therefore, unlike the terrestrial climate data used to fit the model in this study, the 
oceanographic data we use are modelled rather than observed data.  The SSM covers much 
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of Britain and Ireland waters (Figure 3c, d) at variable spatial resolution, with highest 
resolution (as low as 1 km node spacing at the coastline) in Britain and Ireland waters. The 
variables retrieved were SST and PEA averaged (weekly mean) over the periods 1990-2014 
and 2038-62. The original data, being of variable spatial resolution on an unstructured grid, 
were aggregated to the same 12 km x 12 km grid as the seabird abundance and terrestrial 
climate data. Data from the historical time period only covered the years 1990 to 2014, and 
therefore did not overlap with the SCR Census time period (1985-1988); SST and PEA values 
for the SCR Census counts were left blank. Although the SSM data span significantly beyond 
the period of the Seabird 2000 census, they were the only oceanographic data available linked 
to the UKCP18 projections, and we therefore regard them as likely to be indicative of the 
spatial variation present across the MARPAMM area. However, if species’ responses to 
variation in marine climate differ according to whether that variation is temporal or spatial, 
then our projections based purely on spatial variation in marine climate may be less reliable. 
 
Bathymetry data were derived from UKCP09 marine projections data (Hadley Centre for 
Climate Prediction and Research 2017). These consist of the depth of the water column in m 
on a 12 km x 12 km grid. Although projections are available for sea level rise, this is predicted 
to be of the order of tens of cm within the study area over the 21st century (Met Office Hadley 
Centre 2018a), while the bathymetry data are in m. Therefore the same bathymetry data 
were used for the historical and future periods.  
 
Due to variation in seabird species foraging distances (Table 1), the area of ocean available 
(and thus the area over which oceanographic variables are relevant) from a given colony 
varies considerably between species. Each oceanographic variable was thus averaged over 
species-specific foraging ranges, derived from Woodward et al. (2019), which provides 
updated seabird foraging range estimates to those of Thaxter et al. (2012). We used mean 
maximum foraging range from Woodward et al. (2019) for all species other than Arctic skua 
and Leach’s storm petrel. For these two species no mean maximum foraging range from 
colonies was available, and so we used the estimates from Thaxter et al. (2012) which were 
based upon observed distance from shore rather than distance from colony (Table 1). For a 
given cell and species / oceanographic variable, the mean was taken of all values for that 
variable over the species’ mean maximum foraging range, weighted by the reciprocal of 
distance (distance + 0.1km to avoid dividing by zero) of the oceanographic variable points 
from the midpoint of the cell (Table 2).  

2.5 Environmental data - other 

Spatial variation in seabird abundance is caused by many processes. Most simply, many of 
our study species solely or mostly breed at the coast or on small islands, whilst some also 
breed extensively inland. We therefore include three ‘nuisance’ variables (i.e. non-target 
environmental variables, used to absorb some variation in seabird abundance) to account for 
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spatial variation in seabird abundance: coastal – whether a cell was entirely more than 5km 
from the coast; islands – whether a cell contained any islands less than 15km2 in area; 
coastline_length – the length of coastline within a cell. It is worth noting that these will be 
poor descriptors of the physical variables likely to influence seabird abundance at this scale, 
particularly features of cliff height and length that cannot easily be derived from large-scale 
datasets in a way that is relevant for each species. This means that we expect our models to 
be relatively weak predictors of spatial variation in seabird abundance for species where such 
features are important, but that this does not necessarily mean that they will not be good 
predictors of the climatic component of such distributions (e.g. Johnston et al. 2013). To test 
this, future validation of these models using the completed Seabirds Count data, when 
available, would be recommended, to test how well observed changes in seabird populations 
from 2000 to 2020 match model predictions based on observed changes in climatic and 
oceanographic variables over that period.  
 
All data preparation was carried out in R (R Core Team 2018). 

2.6 Modelling approach 

Seabird abundance at the two most recent censuses was related to environmental variables 
for each species individually, using data from across Britain and Ireland. The fitted model was 
then used to project future seabird abundance in 2050, using projected terrestrial and 
oceanographic data for 2050 under the greenhouse gas concentration scenario RCP8.5. 
RCP8.5 represents the most aggressive future greenhouse gas concentration scenario, but 
also the scenario most consistent with the current global trajectory (Schwalm et al. 2020). 
Predictions were then made from these models at the Britain and Ireland scale, before being 
subset to the INTERREG VA region. 
 
Seabird abundance should be subject to both intrinsic and extrinsic causes of spatial 
autocorrelation (Beale et al. 2010). To make inferences about the relationship between 
climate, oceanography and seabird abundance, while properly accounting for spatial 
autocorrelation, we fit spatial models using Integrated Nested Laplace Approximation (INLA; 
Rue et al. 2009). INLA fits models in a Bayesian framework; but by estimating, rather than 
sampling from, the posterior distribution, INLA presents major gains in computational 
efficiency compared to traditional MCMC methods for fitting spatial models to large datasets. 
 
In order to account for spatial autocorrelation, we modelled seabird abundance as a function 
of both fixed effects (environmental variables) and a spatial random effect. The spatial 
random effect (here, a Gaussian random field) with Matérn spatial covariance structure was 
approximated using the SPDE approach (Lindgren et al. 2011; Bakka et al. 2018). This 
approach makes a simplified representation of a continuous Gaussian random field in terms 
of a number of linear basis functions. For this approach, a two-dimensional mesh must be 
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specified in order to define the basis functions. The mesh was defined according to the 
geographical locations of the data-contributing cells (Figure 4). The coordinates of these 
locations were transformed to a projected coordinate reference system (WGS84 / UTM 30N) 
so that the scale was the same for both dimensions, and these transformed coordinates were 
scaled to mean 0 and standard deviation 1 to avoid numerical issues. The parameters of the 
mesh were defined in such a way that: the inner portion of the mesh included all of the census 
points for that species; the inner portion of the mesh was covered by regular small triangles 
(but not too small that model runtime was unacceptably high); and a large buffer was left 
outside the inner portion in order to avoid boundary effects in the spatial random field within 
the area of interest. Once the mesh had been created, a projector matrix was then specified 
to link the spatial random effect to the locations of the observed data.  
 

 
Figure 4. INLA model mesh (see 4.2): red points = contributing census-sites, blue and black lines define inner 
and outer portions of mesh, grey lines link mesh nodes. 
 
Counts (zero or positive) were not recorded for all species at all census-sites. For census-sites 
at which no count for a given species was recorded, it was assumed that the species was not 
present. Therefore the available dataset for a given species in a given census consisted of 
count data (mostly positive but some zeros) for some cells, and non-count data (i.e. zeros) for 
all remaining cells containing seabird census-sites; for all species the non-count data 
constituted a larger proportion (sometimes >99%) of the total available dataset than the 
count data. A hurdle model was therefore used (e.g. Sadykova et al. 2020); this separately 
models presence/absence (with a binomial likelihood) and abundance-given-presence.  
 
Given that the seabird abundance data are counts, the distribution family used for the 
abundance-given-presence likelihood needed support over the set of positive integers, and 
so needed to be a zero-truncated distribution. Preliminary data exploration also revealed that 
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the non-zero seabird abundance data were over-dispersed, presumably due to aggregation 
effects from colonial breeding. The negative binomial distribution, which includes a 
parameter for over-dispersion, was therefore considered more appropriate than the Poisson 
distribution. The more flexible Tweedie distribution sometimes used for seabird abundance 
(e.g. Johnston et al. 2013) is not currently available for INLA. Therefore a zero-truncated 
negative binomial likelihood was used for the abundance-given-presence component of the 
hurdle model. Presence and abundance-given-presence were assumed to be driven by slightly 
different processes, and so parameters for the explanatory variables and spatial random 
effect were estimated separately for the two model components. 
 
Seabirds are expected to have hump-shaped relationships with environmental variables. 
Therefore both linear and quadratic terms were included in the full model for all continuous 
variables. The full model comprised nine environmental covariates, nine quadratic terms for 
the environmental covariates, and three nuisance variables (Table 2). 
 
Default priors were given for the fixed effects in the model. The priors for the Matérn 
covariance function of the random effect were specified according to its range r and standard 
deviation σ. Reasonably vague prior parameters were given: P(r  > 0.3) = 0.5; P(σ > 10) = 0.01. 
All environmental covariates were scaled to mean 0 and standard deviation 1 before inclusion 
in the model. Models were fitted in R-INLA (Rue et al. 2009), accessed through R.  
 
Abundance data were used from both censuses, and so there were repeated measures at 
census-sites that were surveyed in both censuses. Although this is unlikely to affect the 
estimates of the coefficients, it may overestimate the precision of the estimates. Although 
there is repeated sampling (i.e. two census periods) at the same cells, there is not enough 
repeated sampling (only two census periods) to estimate the parameters of an additional 
random effect for cell.  

2.8 Model diagnostics and validation 

Success of model convergence was assessed using the Kullback-Leibler distance (KLD) of each 
parameter. KLD measures the ability for the normal distribution to approximate the posterior 
probability distribution for a given parameter, and should be close to zero if successful.  
 
The ability of the model to predict withheld data was assessed for each species. For each 
species, a validation model was fitted using presence and abundance data from just 70% 
(randomly selected) of the census-sites. Using the fitted model, the species’ presence and 
abundance was then predicted at the remaining 30% of the census-sites. The predictive 
performance of the model was assessed by: a) the area under the curve (AUC; the 
discrimination ability of a classifier) of the receiver operating characteristic for the predicted 
and observed presences; b) R2 of the relationship between the predicted and the observed 
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abundances; c) root mean-square error (RMSE) of the predicted abundances.  These statistics 
varied depending on the random sample of census-sites withheld, so the median of each 
statistic was taken over 20 model runs (enough iterations for the median to converge in 
preliminary analyses). 
 
Some seabird species (e.g. Leach’s storm-petrel, gannet and Manx shearwater) are abundant 
but only have a small number of colonies in Britain and Ireland. These species therefore have 
relatively few data from which to model the relationship between climate and abundance. 
Results are not presented for species with fewer than one data per parameter.  

2.9 Prediction 

Prediction was made using the full model (using all data, rather than the validation model) for 
each species. Predictions of a response variable under given conditions are easily made in 
Bayesian models, by simply supplying the model with the covariate values of interest and 
leaving the response variable blank for those values. Therefore, when given future values for 
the environmental covariates, the model can be used to predict future species abundance. 
Models typically mis-predicted known species abundance (assessed by Conditional Predictive 
Ordinate, equivalent to probability density) in a given cell, particularly at low observed 
population sizes. Therefore future predicted abundance was adjusted by multiplying 
predicted change in abundance (i.e. predicted abundance in 2050 / predicted abundance in 
2000) by the observed abundance at Seabird 2000. For comparability, UKCP18 modelled data 
were used for predicting abundance in both 2000 and 2050 (rather than using HadUK/Met 
Éireann data for predicting abundance in 2000). Strictly speaking, as these predictions are for 
one future climate change pathway, they are really projections of a potential future based on 
the assumptions of climatic and oceanographic change associated with that pathway, and the 
model assumptions linking climatic and oceanographic data to seabird abundance.  
 
Multiplying predicted change in abundance by observed abundance at Seabird 2000 means 
that census-sites not occupied at Seabird 2000 will also not be predicted to be occupied in 
2050, and therefore assumes there will be no colonisation of new locations. Therefore an 
additional cell-level index of overall predicted change in relative presence probability (from 
the presence/absence component of the hurdle model) was produced for all land cells in the 
study area.  
 
To predict abundance and associated uncertainty at individual sites, a frequency distribution 
of predicted change in abundance was generated for each cell. This was done by sampling 1 
random draw x and y from the posterior distributions of the predicted abundance in 2050 and 
2000 respectively, and then by dividing x by y. This calculation was repeated 10,000 times for 
each cell to derive a frequency distribution of predicted change in abundance for that cell. 
The observed abundance in 2000 was multiplied by the 2.5th, 50th and 97.5th percentile of this 
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frequency distribution to give the median abundance (with confidence interval) for each cell. 
This abundance (and confidence interval) was apportioned among the constituent census-
sites in the cell proportionally according to the relative size of their counts during Seabird 
2000. Where a given census-site spanned more than one cell, the predicted abundance (and 
confidence interval) for that census-site was summed across the cells it spanned. 
 
Projections were made over the entirety of Britain and Ireland, and then subset to the 
INTERREG VA area. As defined here, the INTERREG VA area contains: EU NUTS (nomenclatures 
d’unites territoriales statistiques) regions Arran & Cumbrae, Argyll & Bute, Dumfries & 
Galloway, East Ayrshire and North Ayrshire mainland, Lochaber, Na h-Eileanan Siar (Western 
Isles), South Ayrshire, and Skye & Lochalsh in Great Britain; Northern Ireland; and Cavan, 
Donegal, Leitrim, Louth, Monaghan and Sligo in Ireland (Figure 1). For each species, adjusted 
predicted future abundance (with confidence intervals) is presented for all census-sites, and 
summed within a) the INTERREG VA region and b) Britain and Ireland. We also present 
equivalent projections for each of four MPA regions separately (Appendix E ). 

2.10. Vulnerability assessments 

We used the projected changes in seabird abundance, information from the literature review 
(Johnston et al. 2021), and recent observed trends (between census or from the SMP 
monitoring scheme), as inputs to an assessment of the vulnerability of each species to climate 
change. We followed the Thomas et al. (2011) methodology that compares the extent to 
which projected trends match those currently observed. This method has been shown to 
produce projections that correlate with observed trends (Wheatley et al. 2017). This 
framework also makes use of evidence that the observed changes can be linked to climate 
change, and considers the extent to which populations and distributions may have additional 
vulnerabilities (e.g. see Burthe et al 2014 for overview) or constraints, such as being limited 
by other factors such as fisheries pressure and predation.  
 
Thomas et al. (2011) use two separate projections to inform climate change vulnerability 
assessment: projected range trend within the existing range, and projected range trend 
outside of the existing range. Because we model abundance rather than changes in 
distribution, our approach differed from the exact approach of Thomas et al. Firstly, we 
followed Pearce-Higgins et al. (2014) to use projections of changes in abundance rather than 
range extent. Secondly, we did not make abundance projections outside the existing range, 
and so we used the species’ projected abundance change value to represent projected change 
in both Stage II (recent range) and Stage IV (future range) of the Thomas et al. (2011) 
framework, and the same observed population change value in Stages I (recent range) and III 
(future range). This is summarized in Figure 5 and means that the final vulnerability scores are 
a function of both observed and projected future population trajectories (Table 3). Where 
these differ in direction and there is evidence of a climate link to the observed changes as 
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well as the projected changes, then the outcome may indicate that species have both a risk 
of decline and potential opportunity for increase, depending upon the strength of evidence.  
 

 
 

Figure 5. Summary of the processes involved in the application of the full Thomas et al. (2011)  framework, and 
how those are represented by the various stages of the process. Grey boxes require data on observed and 
projected population changes, and white boxes use additional literature.  
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Table 3. Cross-tabulation of the risks and opportunities associated with climate change for each species, in order 
to produce the overall vulnerability assessment.  Dark orange cells are indicative of high vulnerability, medium 
orange, moderate vulnerability; light orange, vulnerability and opportunity; light blue, low impact; medium blue, 
moderate opportunity and dark blue, high opportunity. 
 

Opportunity/Risk VERY HIGH HIGH MEDIUM LOW 

LOW HIGH RISK HIGH RISK MEDIUM RISK LIMITED IMPACT 

MEDIUM HIGH RISK MEDIUM RISK RISKS & & 
OPPORTUNITY 

MEDIUM 
OPPORTUNITY 

HIGH MEDIUM RISK RISKS & & 
OPPORTUNITY 

MEDIUM 
OPPORTUNITY 

HIGH      
OPPORTUNITY 

VERY HIGH RISKS & & 
OPPORTUNITY 

MEDIUM 
OPPORTUNITY 

HIGH 
OPPORTUNITY 

HIGH 
OPPORTUNITY 

For this evidence, we used the climate change mechanism review (Johnston et al. 2021), SMP 
population trends (JNCC 2020) and where those are lacking, changes in abundance from 
Seabird 2000 (Mitchell et al. 2004). The assessment has levels of confidence associated with 
it, depending upon the strength of evidence linking observed and projected changes, the fit 
of the modelled changes and the quality of the survey data to generate observed trends. We 
used the model fit results to identify good, moderate and poor quality models. Species with 
population trends reported by SMP were regarded as good, whilst trend information from 
Seabird 2000 was regarded as being of poor quality as being ~20 years out-of-date. Updating 
this with the new Seabirds Count census results when available would be sensible to do. 
Although we did not have specific population change data for the INTERREG VA region, we 
repeated the vulnerability assessment for this region based on the projected changes specific 
for colonies in the region to give a likely indication of any potential differences as they apply 
to this region.  
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3. Results 

3.1 Model performance and fit 

 
Table 3. Model fit. Median AUC (presence/absence component), R2 and RMSE (abundance component) from 20 
iterations of model. We define three discriminatory ability categories for AUC, colour-coded: moderate (0.7-0.8, 
light blue); good (0.8-0.9, medium blue); excellent (>0.9, dark blue). We define four predictive ability categories 
for R2, following Pearce-Higgins et al. 2011: very poor (<0.01, dark orange); poor (0.01-0.06, light orange); 
moderate (0.06-0.25, light blue); good (>0.25, medium blue).  

Species AUC R2 RMSE 
Fulmar 0.916 0.231 2520.0 
Storm-petrel 0.926 0.003 40085.3 
Cormorant 0.745 0.013 78.2 
Shag 0.900 0.055 162.2 
Arctic skua 0.984 0.097 455.0 
Black-headed gull 0.847 0.028 1480.7 
Common gull 0.898 0.351 857.9 
Great black-backed 
gull 

0.883 0.206 74.5 

Herring gull 0.857 0.041 513.3 
Kittiwake 0.870 0.045 3743.3 
Lesser black-backed 
gull 

0.780 0.010 1035.0 

Arctic tern 0.906 0.243 438.0 
Common tern 0.816 0.060 90.3 
Little tern 0.908 0.014 35.6 
Sandwich tern 0.794 0.011 1251.7 
Black guillemot 0.943 0.446 98.0 
Guillemot  0.876 0.002 10044.4 
Puffin 0.897 0.140 6558.8 
Razorbill 0.892 0.002 1593.5 

 
The model did not run successfully for four species (great skua, Leach’s storm-petrel, roseate 
tern Sterna dougallii and Mediterranean gull), the latter three of which had fewer than one 
data per parameter. Model results are therefore not presented for these species, nor for the 
remaining two species (gannet and Manx shearwater – see 2.8) for which there were fewer 
than one data per parameter. Results are presented for the remaining 19 seabird species. 
However, for data-poor species (those with fewer than 4 data per parameter) model 
behaviour differed to that of more data-rich species. This was reflected as relatively extreme 
absolute projections for Arctic skua, little tern, Sandwich tern Thalasseus sandvicensis and 
storm-petrel (Table 4) and parameter estimates for Arctic skua, Sandwich tern and storm-
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petrel (Appendix A). Although results are presented here for these four species, they may be 
unreliable and therefore should be treated with caution. 
 
KLD (approximately a measure of parameter convergence; see 2.8) was less than 0.1 for all 
parameters for all models which did not fail, indicating that the models converged. Model fit, 
assessed using withheld data, varied considerably between species and between model 
components (Table 3). Presence/absence was predicted with high accuracy, with AUC 
(classification ability; see 2.8) values from 0.745 (cormorant) to 0.984 (Arctic skua). 
Abundance was predicted with lower accuracy, with R2 values from 0.002 (guillemot Uria 
aalge and razorbill Alca torda) to 0.446 (black guillemot Cepphus grylle). Following the criteria 
of Pearce-Higgins et al. (2011), none were regarded as excellent, two as good, four as 
moderate, ten as poor and three as very poor. Root mean-square error represents the 
absolute error in the models’ abundance predictions and varies from 35.6 (little tern) to 
40085.3 (storm-petrel). Model fit as assessed here is not necessarily an estimate of the 
proportion of variation in the response variables explained by the fixed effects alone, because 
some of the variation in the response variables is explained by the spatial random effect. 

3.2 Parameter estimates 

The spread of parameter estimates across all species for each variable is presented in Figure 
6. Parameter estimates often differed considerably between presence and abundance 
components of the model. Unsurprisingly for seabird species, both presence and abundance 
were generally negatively related to distance inside the coast. Typically, parameter estimates 
for relationships with terrestrial climate were of greater magnitude, and more consistently so 
across species, than for relationships with oceanographic variables. Apart from nuisance 
variables, the five variables with significant (credible intervals not overlapping with zero) 
parameter estimates for the most species (linear terms in abundance component only) were: 
breeding season maximum temperature (mostly negative), winter precipitation (all negative), 
winter minimum temperature (mostly positive), and breeding season and winter potential 
energy anomaly (all negative and all positive respectively).  
 
Breeding season SST was only significant in abundance sub-models for Arctic skua (negative), 
black-headed gull (positive) and herring gull (positive). There was considerable variation in 
parameter estimates across species: these are presented in Appendix A. 

3.3 Projected future abundance and presence 

In general, most (14 of 19) species are predicted to decline in abundance in the INTERREG VA 
area (Table 4). Arctic skua and storm-petrel were projected to respectively decline to 
extinction or virtually to extinction within the project area, although these projections were 
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based respectively on poor and very poor model fits. Fulmar, Arctic tern, little tern, Sandwich 
tern and puffin were all projected to decline by more than 50% across the INTERREG VA area, 
with particularly high rates of loss exceeding 90% projected for puffin. Conversely, shags, 
black-headed gulls and lesser black-backed gulls were all projected to increase by more than 
50% across the region. Given the incorporation of fine-scale variation in these predictions at 
the colony level into the uncertainty associated with these estimates, it is worth noting that 
the 95% confidence intervals of each of the projections overlap with current abundance, with 
the exception of Arctic skua. Typically, the INTERREG VA region is projected to hold an 
increasing proportion of species’ Britain and Ireland populations; however, this varies greatly 
between species.  
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